Mid-Infrared Detector Array Technologies for SOFIA and Sub-Orbital Observatory Instruments

Judith L. Pipher1,3, Craig W. McMurtry1, Mario S. Cabrera1,2 and William J. Forrest1

1Department of Physics and Astronomy
University of Rochester, Rochester NY 14627, USA
2Conceptual Analytics LLC
8209 Woburn Abbey Road
Glenn Dale, MD 20769, USA
3jlpipher@pas.rochester.edu

Received February 1, 2021; Revised April 15, 2021; Accepted April 22, 2021; Published May 26, 2021

The status of various photovoltaic, photoconductive, BIB/IBC, superlattice, TES and KID technologies to produce arrays sensitive from 15 to 50 μm (Mid-infrared) will be reviewed to assess where reasonable investments should be made for SOFIA and other sub-orbital observatory instruments. These include HgCdTe, Si:As IBC, Si:Sb BIB, Ge:Ga, type 2 superlattice arrays of both III–V and II–VI materials and both TES and KID arrays. KID technologies for this wavelength region show promise, although to date there are no published experimental data on KID arrays for the mid-infrared.

Keywords: Mid-infrared; detector arrays; SOFIA; sub-orbital missions.

1. Introduction

The mid-region of the IR spectrum (15 to ~50 μm) has seen far less concentrated detector development than at Short Wave IR (SWIR, <2.5 μm cutoff), Mid Wave IR (MWIR, ~5 μm cutoff), Long Wave IR (LWIR, ~14 μm cutoff), Very Long Wave IR (VLWIR, >14 μm cutoff, overlapping the short end of the Mid-IR band) and at far-IR/submillimeter wavelengths (>50 μm cutoff), where photodetector and bolometer developments have been optimized for sub-orbital and space astronomy, and even for ground-based astronomy where the Earth’s atmosphere permits. Yet, strong continuum radiation from dust, as well as key diagnostic features from PAHs and silicate dust (e.g. Peeters et al., 2002), MgS (Forrest et al., 1981) and Buckminster Fullerene/C60 (Patatas et al., 2020), and line emission from a variety of diagnostic molecules, atoms and ions fall within this wavelength range (Peeters et al., 2002). We review here the current status of detector array development for this mid-region of the IR spectrum. This review builds on a presentation by one of us for the SOFIA Science Center Workshop: Building the 2020–2025 Instrument Roadmap (https://www.sofia.usra.edu/science/instruments/instrument-development/workshop-building-2020-2025-instrument-roadmap).

We will first explore the status of HgCdTe photovoltaic detector arrays, which have been successfully demonstrated at wavelengths from <1 to 16.7 μm. Extension to longer wavelengths has been proposed, and attempted to slightly longer than 17 μm, but to date has not been particularly successful, although there has been only very limited effort. One attempt involved forming a Type 2 superlattice (T2SL) HgTe/HgCdTe detector (Zhou et al., 2002, 2003a,b). Other T2SL arrays, comprised of compounds formed from elements from the III–V groups from the periodic table, rather than from II–VI group materials, with 30+ μm design cutoff wavelengths have been attempted, but have not met their promise to date.

Si:As Blocked Impurity Band (BIB) or Impurity Band Conduction (IBC) arrays (5–28 μm) were
developed for *Spitzer Space Telescope*’s IRS and IRAC instruments (from vendors Leonardo DRS and Raytheon Vision Systems, respectively), were later used in *WISE*, and *SOFIA* has utilized them in the FORCAST instrument. They are also used in the MIMIZUKU instrument on the Tokyo Atacama Observatory (TAO) 6.5-m telescope. Development of Si:As IBC arrays for JWST’s MIRI instrument has led to excellent performance (Bright et al., 2016). Si:As IBC arrays are extremely well-developed and mature as a consequence for low background use such as for *Spitzer* and JWST, but at higher backgrounds such as for *SOFIA* and ground-based telescopes, low frequency noise limits their performance.

Si:Sb BIB arrays (25–40 μm cutoff) were developed for *Spitzer*’s IRS instrument by DRS, and have been also used in *SOFIA* FORCAST and the TAO 6.5m telescope’s instrument MIMIZUKU. Larger format arrays had been specified for the proposed *SPICA* mission, which as of 10/15/20 is no longer considered a candidate for the upcoming selection as ESA’s 5th medium class mission in its *Cosmic Vision* Program. Si:Sb technology has mainly lapsed and requires re-development.

Ge:Ga photo-conductive arrays, sensitive from 40 to 120 μm when unstrained, have been used in Herschel/PACS, *Spitzer* MIPS, and *SOFIA* FIFI-LS among other instruments: those are relatively small, individually built arrays. Much later, several authors began monolithic Ge:Ga array development for *AKARI* and *SPICA* (Fujiwara et al., 2003; Kamiya et al., 2010; Shirahata et al., 2010). Ge:Ga BIB array development was once considered to be promising for astronomy (Watson et al., 1993). Later efforts by Olsen et al. (1997; Ge:Sb BIB detectors) and Hanaoka et al. (2016; Ge:Ga BIBs) demonstrate longer wavelength cutoffs than conventional Ge:Ga arrays. The Ge:Ga BIBs exhibited degraded performance at the short wavelength side. While efforts to perfect the technology continue, Ge BIB technology remains immature.

Microwave Kinetic Inductance Detector (MKID) is a technology that is capable of photon counting and simultaneously energy resolving. Kinetic Inductance Detector Arrays (KIDs) have been developed for the visible/NIR (Lee et al., 2020; Meeker et al., 2018) and the Far-IR (Baselmans et al., 2017; Ferrari et al., 2018). It is hoped that KID arrays will perform well at Mid-IR wavelengths, but they have not yet demonstrated the required performance (Perido et al., 2020), and to our knowledge, have not been included in any Mid-IR astronomical instrument to date. Transition Edge Superconductor (TES) arrays fabricated by the GSFC group have been demonstrated at the edge of the Mid-IR wavelength range in the *SOFIA* HAWC+ instrument (the shortest wavelength Band A extends from 48.65 to 57.35 μm half power; Harper et al., 2018). Audley et al. (2018) describe the development of 3 × 49 TES arrays fabricated by SRON for SAFARI (a *SPICA* instrument), with the shortest wavelength channel being 34–56 μm. There are not yet any published sensitivity measurements on this channel. Both KID and TES array development require substantial investment before they can be utilized for Mid IR astronomy. The recent cancellation of *SPICA* is a setback for European TES development.

2. Array Technologies Considered

2.1. *HgCdTe* photovoltaic arrays

Hg$_{1-x}$Cd$_x$Te photovoltaic detectors can be tailored to different long wavelength cutoffs at a specific focal plane temperature, by modifying the Cd mole fraction x. This tailoring allows short wavelength, mid wavelength, as well as long wavelength sensitivity required for different astronomical purposes. The arrays can be matched to atmospheric transmission windows for ground-based astronomy, and mission specific purposes for space and sub-orbital missions. An example is the design of the proposed NASA mission *NEO Surveyor*, where 10 μm cutoff arrays are required to sense NEOs (Near Earth Objects) which have a temperature ~300 K. The empirically derived bandgap energy E_g in eV as a function of x and temperature T is given by Hansen and Schmidt (1983):

$$E_g = -0.302 + 1.93x - 0.81x^2 + 0.832x^3 + 5.35(1 - 2x)10^{-4}T.$$ \hspace{1cm} (1)

SWIR and MWIR HgCdTe arrays are extremely mature and have been demonstrated on a variety of telescopes, both in space and on the ground (e.g. Rauscher et al., 2014). LWIR and VLWIR arrays are at a different point in their development. Our group at the University of Rochester has been working on LWIR arrays for several decades, and VLWIR arrays for about a decade (Bacon et al., 2003, 2004, 2010; McMurtry et al., 2013, 2016; Dorn
et al., 2016, 2018; Cabrera, 2019; Cabrera et al., 2020).

Obviously, a compositional gradient in the array will affect the bandgap, and hence the cutoff wavelength of a given array \(\lambda_{co} = \frac{hc}{E_g} \). At a temperature of 40 K, the \(\approx 10 \mu m \) cutoff arrays we at the University of Rochester have developed with JPL, University of Arizona and Teledyne Imaging Sensors for the proposed Near Earth Object survey mission (NEO Surveyor) perform extremely well (McMurtry et al., 2013; Dorn et al., 2016, 2018): they have a Cd fraction of \(x = 0.232 \) at this temperature. The crossover composition is at \(x \approx 0.16 \) where \(E_g \) becomes 0 and the semiconductor changes into a semimetal (see Fig. 1 for \(x \) ranging from 0.16 to 0.232). The closer \(x \) approaches the crossover composition, the longer the cutoff wavelength of the semiconductor.

What are the longest cutoff wavelengths for HgCdTe projected before that transition occurs? Norton (2002) suggests 25 \(\mu m \), while Betz and Boreiko (2001) project that wavelengths as long as 150 \(\mu m \) are possible at low focal plane temperatures, although they point out that either heterodyne or super-lattice techniques utilizing HgCdTe or HgTe and CdTe may prove to be more successful. As discussed below, some groups used long wave (\(\approx 20 \mu m \)) HgCdTe as a photo-mixer for heterodyne detection in the Far-IR and there were also efforts to develop type II–VI superlattices employing HgCdTe.

Practically speaking, Teledyne Imaging Sensors physicists Don Lee and Majid Zandian claim that by only changing the alloy composition, the long wavelength program that our group at the University of Rochester ran yielded their longest wavelength alloy device they have produced to date (\(\lambda_{co} = 16.7 \mu m, \ x = 0.205 \); Cabrera, 2019; Cabrera et al., 2020). In order to achieve the desired results of detector arrays with \(\lambda_{co} > 15 \mu m \) on a 1 k x 1 k format, lot splits including wafers of varying properties were required (see Wu, 1997, Fig. 12). Our results for the 16.7 \(\mu m \) array H1RG-20302 are shown in Figs. 2 and 3. With 150 mV applied bias at a focal plane temperature of 23 K, the median dark current is 32 e−/s and the well depth 34 ke−. Measurements of process evaluation chips from the same wafer as H1RG-20302 indicated the responsive quantum efficiency over the 6–12 \(\mu m \) waveband was 83%. Assuming an artificially imposed requirement on the dark current of 200 e−/s (there is no mission projected to use this array and thus no requirement, but that is the NEO Surveyor required upper limit for the 10 \(\mu m \) array), 79% of the pixels met this specification. Detailed examination of the I–V and I–T curves for long-wave arrays in this study showed that the dark current was dominated by quantum tunneling (trap-band and band-band) at low temperatures, even though design steps were taken to minimize the tunneling contribution. Quantum tunneling is a strong function of bias, and with the H1RG Multiplexer readouts, appreciable applied reverse bias is required to develop sufficient well depth. Lower temperatures than 23 K were not attempted because the H1xRG multiplexers do not operate well at \(T < 23 K \). Since the focal plane temperature required for reasonable thermal dark
currents decreases as the cutoff wavelength increases, new multiplexer designs are required which work at low temperatures. It is conceivable that \(\lambda_{co} = 20 + \mu \text{m} \) alloy devices could be produced, but as the Hg fraction increases with longer cutoff wavelengths the arrays become softer and more prone to defects adversely affecting the dark current. In addition, control of the parameter \(x \) across the array becomes more difficult. Phillips et al. (2002) cited difficulty in maintaining \(\Delta x \leq \pm 0.002 \) as required to maintain the wavelength within \(\pm 0.5 \mu \text{m} \) at 14 \(\mu \text{m} \). At 16.7 \(\mu \text{m} \) the issue is more difficult: \(\Delta x \leq \pm 0.002 \) corresponds to \(\Delta \lambda \approx \pm 0.75 \mu \text{m} \). So, as the wavelength continues to increase as the alloy composition \(x \) is decreased, control of the wavelength becomes extremely challenging. An additional consideration for any scientific application in astronomy — the pixel pitch of the HxRG multiplexers is 18 \(\mu \text{m} \); MTF requirements would necessitate a larger pixel pitch for these putative longer wavelength devices.

We have not had any 16.7 \(\mu \text{m} \) HgCdTe array material bonded to Teledyne’s GEOSnap capacitive trans-impedance amplifier (CTIA) multiplexer readout: the CTIA readout does not require large applied reverse bias on the detector, reducing the effects of tunneling which plague detectors on traditional readouts. Other investigators (W. Hoffman and J. Leisenring (U. Arizona), M. Meyer (U. Michigan) and P. Hinz (SantaCruz)) have been investigating this multiplexer readout with shorter wave (13 \(\mu \text{m} \)) HgCdTe material that our group developed on the road to producing the 16.7 \(\mu \text{m} \) device.

Spears (1983) reported developing wide-band HgCdTe photodiode photo-mixers at 28 \(\mu \text{m} \) for a laser heterodyne spectrometer. The devices exhibited strong band-band tunneling, and had low optical absorption coefficient at \(\lambda = 28 \mu \text{m} \). The donor concentration was less than \(5 \times 10^{14} \text{cm}^{-3} \), the diode diameter 100 \(\mu \text{m} \), and the operating temperature was 20 K.

Later, Spears (1988) reported developing 20 \(\mu \text{m} \) photoconductor photo-mixers from LPE \(p \)-type Hg\(_{0.812}\)Cd\(_{0.188}\)Te since photodiodes have limited wideband performance in the long wavelength IR because of tunneling. Photoconductors operate at much lower electric fields than photodiodes: Spears apparently never followed up on this development (it was far too difficult to control the alloy with liquid phase epitaxy and the performance garnered was modest). Although molecular beam epitaxy

Fig. 3. Dark current versus well depth for H1RG-20302 a 16.7 \(\mu \text{m} \) HgCdTe array at \(T = 23 \text{K} \).
(MBE) processes utilized today are more accurate, as noted above alloy composition control at the longer wavelengths remains challenging.

2.2. Super-lattice devices

In super-lattice devices, the bandgap is controlled by adjusting the thicknesses of alternating layers of suitable materials in a periodic fashion: these nanolayers are usually formed using molecular beam epitaxy. At 77 K, the bandgap of the semi-metal HgTe is −0.26 eV and the semi-conductor CdTe is 1.6 eV. Although II–VI materials can be utilized to form a superlattice (e.g. HgTe/CdTe or Hg1−xCdxTe/Cd1−yZnyTe), currently III–V materials such as InAs/InGaSb are more commonly used. Type II super-lattice detectors (T2SL), in which the band gaps of the two host semiconductors are in either a staggered or a broken-gap alignment (Sai-Halasz et al., 1978), are the most common type super-lattice SL. In principle, SL detectors for the Mid-IR and Far-IR have advantages over alloy devices, since the cutoff wavelength is easier to control, depending primarily on the thickness of the wells, and since tunneling is expected to be far less of an issue. Betz and Boreiko worked with the University of Illinois Microphysics group (Zhou et al., 2002, 2003a,b) on development of a HgTe/HgCdTe MBE superlattice, among others. This one, a 100 layer SL, was grown on CdZnTe substrate and a mid-wave IR HgCdTe buffer layer. The thickness of the HgTe wells was 80 Å and of the Hg0.05Cd0.95Te barriers 77 Å producing a SL period of 157 Å. Then another buffer layer and a CdTe cap layer were grown. All layers were undoped: the absorption edge wavelength at 5 K is about 30 μm.

The authors investigated the effects of annealing on the SLs, since to form a diode to produce a useable detector, p-type material would be introduced through annealing. Unfortunately, interdiffusion of the wells and barriers resulted from the anneals, shifting the absorption edges to higher energies. A 300 μm × 300 μm single pixel photoconductive device was constructed and its spectral response at 77 K was measured — the cutoff wavelength was determined to exceed 20 μm, but since they used a ZnSe window on their dewar, they could not specify the actual cutoff wavelength.

At the Northwestern Center for Quantum Devices (CQD), Center Director Razeghi and colleagues (Razeghi et al., 2006) reviewed progress made in using III–V materials in preference to II–VI materials (stronger covalent bonds, greater uniformity) to produce T2SLs. SLs with cutoff wavelengths ranging from 3.7 to as long as 32 μm (Wei et al., 2002) were grown to produce InAs/GaSb photodiodes. Brown et al. (2003) developed p-i-n diodes of InAs/GaSb and InAs/InGaSb with λco > 22 μm, and held out hope for good photodiodes out to 32 μm based on Wei et al. More recent work at CQD has concentrated on high temperature MWIR/LWIR devices (HOT arrays), and although they developed 1 k × 1 k arrays, they were not appropriate for astronomy, even for the higher background ground-based telescopes. Daumer et al. (2019) reviewed the state-of-the-art European HgCdTe arrays (λ < 14 μm) as compared to III–V T2SL arrays, and concluded that while the T2SLs potentially have more promise in terms of scalability, stability, and Auger dark current, they have not yet met their promise. Rogalski et al. (2019) also reviewed T2SL arrays in comparison with alloy arrays such as HgCdTe. From these recent reviews, it seems clear that T2SL arrays have not yet been successfully developed for space or sub-orbital application. Current emphasis appears to be on HOT detector arrays, while cryogenically cooled arrays are required for most space and sub-orbital astrophysics, even at the higher backgrounds of SOFIA.

2.3. Si:As and Si:Sb arrays

Si:As BIB arrays with λco = 28 μm were originally invented by Petroff and Stapelbroek (1986) at Rockwell International Corporation, later Leonardo DRS. The Spitzer Space Telescope IRS and MIPS instruments included 128 × 128 format devices (Van Cleve et al., 1995; Hora et al., 2004), and future larger format generations of these devices flew on WISE (Mainzer et al., 2008) and SOFIA FORCAST (Herter et al., 2012). Si:As IBC 256 × 256 arrays, developed by Raytheon Vision Systems — were included as the 2 longer wave channels of the Spitzer IRAC instrument (Hora et al., 2004). These arrays in 1024 × 1024 format have continued to be further developed for the JWST MIRI experiment (Rieke et al., 2015) and for the MIMIZUKU instrument on the TAO 6.5-m telescope (Kamizuka et al., 2012). Si:As BIB/IBC arrays represent a mature technology for Mid-IR wavelengths to 28 μm for low background applications.
Si:Sb BIB arrays, with wavelength response to $\lambda_{co} = 40\,\mu m$ (Fig. 4), have only been developed by Rockwell/DRS, originally for the Spitzer IRS experiment and for SOFIA FORCAST, in relatively small formats. The technology was sufficiently mature in 2012 that 128×128 arrays had been tested for the high background TAO 6.5m MIMIZUKU instrument development (Kamizuka et al., 2012). The low background development for SPICA (Khalap & Hogue, 2012) demonstrated 1024×1024 arrays, although as noted, SPICA has now been canceled. Originally, Hirokazu Kataza (JAXA) led the Si:Sb development for the SPICA Mid-IR camera and Spectrometer (Kataza et al., 2015), but Takehiko Wada (JAXA) has taken over. SPICA was in Phase A development prior to cancellation.

Unfortunately, as Leonardo DRS puts it, the Si:Sb process is “stale” since the 2012 employees who worked on the project are no longer at DRS. A junior colleague had been taught the ropes, but DRS has not had sufficient financial incentive to begin the 6–8M process of redevelopment. For $\lambda_{co} = 40\,\mu m$, Si:Sb is the most mature technology existing today. A more highly doped IR active layer would increase $40\,\mu m$ response somewhat at the expense of increased dark current. The only astronomically demonstrated detector array technologies for $\lambda > 40\,\mu m$ include smaller format stressed and unstressed Ge:Ga detector arrays and Transition Edge Sensor — TES arrays.

2.4. Ge:Ga arrays

Unstressed Ge:Ga arrays are sensitive from < 40–120μm (Young et al., 1998). Very small Ge:Ga arrays were developed for the Kuiper Airborne Observatory’s FIFI experiment (Stacey et al., 1992) and Young et al. (1998) developed non-monolithic arrays for Spitzer MIPS by stacking 1×32 linear modules. Based on earlier Herschel PACS arrays, Rosenthal et al. (2000) described development of 16×25 photoconductor arrays of unstressed Ge:Ga for SOFIA FIFI-LS, as well as stressed Ge:Ga for wavelengths beyond $120\,\mu m$. Two dimensional direct monolithic Ge:Ga arrays (Fig. 5) were in development for SPICA (Shirahata et al., 2010; Kamiya et al., 2010) based on very small 3×20 monolithic arrays successfully flown on AKARI described below.

![Fig. 5. Structure of planned 64×64 SPICA Ge:Ga array. Reproduced by permission from Shirahata et al. (2010).](image)
This first monolithic 2D Ge:Ga array for Astronomy was flown in 2006 on AKARI or ASTRO-F (Fujiwara et al., 2003) and is shown in Fig. 6. The development of monolithic arrays was a big step forward to making these devices practical for the future. The arrays, however, are considerably more complex to produce than the shorter mid-IR wavelength HgCdTe and Si:As/Sb arrays described earlier. The quantum efficiency of a free-standing Ge:Ga photoconductor is low. In order to enhance the absorption of radiation, the non-monolithic devices may be enclosed in individual gold-plated cavities, with area-filling light cones, or in the case of the Spitzer devices, solid Ge feed horns. Of course, the monolithic arrays cannot be enclosed in cavities. As Beeman and Haller (1994) first showed, contacting each non-cavity pixel in the longitudinal direction yielded the best performance, and most of the arrays make use of that configuration. For the small AKARI array (Fig. 6), B⁺ implants form the transparent electrodes and metallic stripes on the transparent electrode define the pixels. Indium bumps between the detectors and the specially designed three-step differential CTIA p-Si MOS readout form the detector array. In order to increase responsivity, a BIB-like structure on the array was implemented. Earlier Ge:Ga BIB attempts (e.g. Watson et al., 1993) were only partially successful.

As noted above, Kamiya et al. (2010) and Shirahata et al. (2010) were developing a larger 64 × 64 fully monolithic Ge:Ga array for the now cancelled SPICA. The transparent electrode on the top layer is formed by B⁺ implants, and the pixels are separated by 50 µm wide, 30 µm deep grid-shaped ditches on the back surface. Au bumping technology was developed and utilized, and a number of other technological advances were required, including AR coating. Prototype 5 × 5 array measurements were encouraging.

2.5. KID and TES arrays
Perido et al. (2020) describe extending the Kinetic Inductance Detector (KID) technology to the mid-IR for future space and sub-orbital observatories. (Jason Glenn described that development at the SOFIA Workshop referenced above). Their goals are ambitious — to extend the wavelength range of existing sensitive aluminum KIDs for the proposed mission concept “Galaxy Evolution Probe” to
encompass 10–100 μm wavelengths, as well as the already existing and well developed 100–400 μm technology. The detector element is an inductor as shown in Fig. 7. Perido et al. (2020) have designed aluminum KIDs on Si and Ge substrates with simulated absorption efficiencies of 73–80%. Their first test device exhibited noise caused by switching dipoles in the substrate which caused altered capacitance. They calculate the theoretical NEP to be 10^{-17} W/√Hz including all noise sources, but only estimate the quasiparticle lifetime. The absorption can be shifted in wavelength by tuning the aluminum line widths and the unit cell sizes. The group plans to develop a 30 μm wavelength device next, and to investigate AR coatings and the addition of a microlens array to improve sensitivity.

Antenna coupled MKID arrays for submm range astrophysics have been developed by SRON (Ferrari et al., 2018) and current efforts are directed to extending this technology to 30 μm.

TES arrays for the mid-IR are somewhat more advanced developmentally than MKIDs: for example they are currently used in the HAWC+ camera (Harper et al., 2018). SOFIA Observer’s Handbook, cycle 9 update (https://www.sofia.usra.edu/science/proposing-and-observing/observers-handbook-cycle-9/7-hawc) describes the TES arrays used in HAWC+, with absorbing coatings optimized across the 50–240 μm bandpass (Band A extends from 48.65 to 57.35 μm HPBW and exhibits approximately 50% operability). The two 32 × 40 imaging sub-arrays (Fig. 8), with pixels of size 1.135 mm square (Jhabvala et al., 2014) are each suspended within a supporting frame and are cooled to 0.1–0.2 K (Harper et al., 2018).

The Origins Space Telescope Technology Plan (2019) describes further development of TES technology in the mid-IR to improve the NEP, increase the format, and characterize the stability for consideration for the proposed Origins Space Telescope spectrometer experiment, MISC. Alternate technologies (HgCdTe, Si:AS IBC) are also being evaluated for MISC (Roellig et al., 2020).

3. Summary

Mid-IR 15-50+ μm detector array strategies are in various phases of development. Some technologies are relatively mature; others are at the cusp of
tantalizing success. The Origins Space Telescope Technology Plan (2019) includes parallel development of TES, HgCdTe and Si:As IBC Mid-IR arrays for the MISC experiment, with the extremely difficult task of exhibiting 5 ppm stability for a very sensitive, large format array (Roellig et al., 2020). It seems likely that the KID arrays will also prove competitive in the Mid-IR, if sufficient funding continues. Since current emphasis on Type 2 super lattice (T2SL) arrays extends primarily to high temperature operation, it is unlikely that they will prove competitive for space and sub-orbital astrophysics by 2030. Since SPICA, the ESA/JAXA mission with a far infrared telescope was cancelled, Si:Sb array development is unlikely to receive sufficient funding to advance, unless NASA or ESA considers its viability for future missions crucial.

References

Mainzer, A., Larsen, M., Stapelbroek, M. G. et al. [2008] Proc. SPIE 7021, 70210X.

McMurtry, C. W., Dorn, M., Cabrera, M. et al. [2016] Proc. SPIE 9915, 99150D.

